Reading tabular data
Read table data into python
import redivis
# Specify the table's container, either a dataset or workflow
dataset = redivis.organization("Demo").dataset("iris_species")
table = dataset.table("Iris")
table.to_pandas_dataframe()
# Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
# 0 33 5.2 4.1 1.5 0.1 Iris-setosa
# ...
# Other methods to read data:
# table.to_arrow_batch_iterator()
# table.to_arrow_dataset()
# table.to_arrow_table()
# table.to_geopandas_dataframe()
# table.to_dask_dataframe()
# table.to_polars_lazyframe()
Read table metadata
import redivis
table = redivis.organization("Demo").dataset("iris_species").table("iris")
variable = table.variable("sepalLengthCm")
variable.get(wait_for_statistics=True)
print(variable.properties)
{
"kind": "variable",
... (see variable resource definition)
"statistics": {
"status": "completed",
"count": 150,
"numDistinct": 35,
"min": 4.3,
"max": 7.9,
"mean": 5.8433333333333355,
"approxMedian": 0.8280661279778625
}
}
Load a table within a Redivis notebook
# In a notebook, all tables are scoped to the current workflow.
# Additionally, the notebook's source table can simply be referenced as _source_
table = redivis.table("_source_")
table.to_pandas_dataframe()
Last updated